skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Qiu, Diana Y"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Many-body interactions are essential for understanding non-linear optics and ultrafast spectroscopy of materials. Recent first principles approaches based on nonequilibrium Green’s function formalisms, such as the time-dependent adiabatic GW (TD-aGW) approach, can predict nonequilibrium dynamics of excited states including electron-hole interactions. However, the high-dimensionality of the electron-hole kernel poses significant computational challenges. Here, we develop a data-driven low-rank approximation for the electron-hole kernel, leveraging localized excitonic effects in the Hilbert space of crystalline systems to achieve significant data compression through singular value decomposition (SVD). We show that the subspace of non-zero singular values remains small even as the k-grid grows, ensuring computational tractability with extremely dense k-grids. This low-rank property enables at least 95% data compression and an order-of-magnitude speedup of TD-aGW calculations. Our approach avoids intensive training processes and eliminates time-accumulated errors, seen in previous approaches, providing a general framework for high-throughput, nonequilibrium simulation of light-driven dynamics in materials. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Water wires, quasi-one-dimensional chains composed of hydrogen-bonded (H-bonded) water molecules, play a fundamental role in numerous chemical, physical, and physiological processes. Yet direct experimental detection of water wires has been elusive so far. Based on advanced many-body theory that includes electron-hole interactions, we report that optical absorption spectroscopy can serve as a sensitive probe of water wires and their ordering. In both liquid and solid water, the main peak of the spectrum is discovered to be a charge-transfer exciton. In water, the charge-transfer exciton is strongly coupled to the H-bonding environment where the exciton is excited between H-bonded water molecules with a large spectral intensity. In regular ice, the spectral weight of the charge-transfer exciton is enhanced by a collective excitation occurring on proton-ordered water wires, whose spectral intensity scales with the ordering length of water wire. The spectral intensity and excitonic interaction strength reaches its maximum in ice XI, where the long-range ordering length yields the most pronounced spectral signal. Our findings suggest that water wires, which widely exist in important physiological and biological systems and other phases of ice, can be directly probed by this approach. 
    more » « less
    Free, publicly-accessible full text available March 1, 2026
  3. Atomically thin two-dimensional transition-metal dichalcogenides (2D-TMDs) have emerged as semiconductors for next-generation nanoelectronics. As 2D-TMD-based devices typically utilize metals as the contacts, it is crucial to understand the properties of the 2D-TMD/metal interface, including the characteristics of the Schottky barriers formed at the semiconductor-metal junction. Conventional methods for investigating the Schottky barrier height (SBH) at these interfaces predominantly rely on contact-based electrical measurements with complex gating structures. In this study, we introduce an all-optical approach for non-contact measurement of the SBH, utilizing high-quality WS2/Au heterostructures as a model system. Our approach employs a below-bandgap pump to excite hot carriers from the gold into WS2 with varying thicknesses. By monitoring the resultant carrier density changes within the WS2 layers with a broadband probe, we traced the dynamics and magnitude of charge transfer across the interface. A systematic sweep of the pump wavelength enables us to determine the SBH values and unveil an inverse relationship between the SBH and the thickness of the WS2 layers. First-principles calculations reveal the correlation between the probability of injection and the density of states near the conduction band minimum of WS2. The versatile optical methodology for probing TMD/metal interfaces can shed light on the intricate charge transfer characteristics within various 2D heterostructures, facilitating the development of more efficient and scalable nano-electronic and optoelectronic technologies. 
    more » « less
  4. We introduce a maximally localized Wannier function representation of Bloch excitons, two-particle correlated electron-hole excitations, in crystalline solids, where the excitons are maximally localized with respect to an average electron-hole coordinate in real space. As a proof-of-concept, we illustrate this representation in the case of low-energy spin-singlet and -triplet excitons in cubic lithium fluoride, computed using the ab initio Bethe-Salpeter equation approach. We visualize the resulting maximally localized exciton Wannier functions (MLXWFs) in real space, detail the convergence of the exciton Wannier spreads, and demonstrate how Wannier-Fourier interpolation can be leveraged to obtain exciton energies and states at arbitrary exciton crystal momenta in the Brillouin zone. We further introduce an approach to treat the long-range dipolar coupling between singlet MLXWFs and discuss it in depth. The MLXWF representation sheds light on the fundamental nature of excitons and paves the way toward Wannier-based post-processing of excitonic properties, enabling the construction of ab initio exciton tight-binding models, efficient interpolation of the exciton-phonon vertex, the computation of Berry curvature associated with exciton bands, and beyond. 
    more » « less
  5. Abstract In two-dimensional chiral metal-halide perovskites, chiral organic spacers endow structural and optical chirality to the metal-halide sublattice, enabling exquisite control of light, charge, and electron spin. The chiroptical properties of metal-halide perovskites have been measured by transmissive circular dichroism spectroscopy, which necessitates thin-film samples. Here, by developing a reflection-based approach, we characterize the intrinsic, circular polarization-dependent complex refractive index for a prototypical two-dimensional chiral lead-bromide perovskite and report large circular dichroism for single crystals. Comparison with ab initio theory reveals the large circular dichroism arises from the inorganic sublattice rather than the chiral ligand and is an excitonic phenomenon driven by electron-hole exchange interactions, which breaks the degeneracy of transitions between Rashba-Dresselhaus-split bands, resulting in a Cotton effect. Our study suggests that previous data for spin-coated films largely underestimate the optical chirality and provides quantitative insights into the intrinsic optical properties of chiral perovskites for chiroptical and spintronic applications. 
    more » « less